
1. Consider the following series and determine if they converge or diverge. In case of an alternating series
specify if the convergence is absolute or conditional.
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2. Give examples of two series
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diverges.

3. For what values of x does the power series
P (4x� 5)n
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converge? Explain

4. (a) Find the McLaurin series for f(x) = ln(1 + x) and determine for what values of x the series
converges.

(b) Deduce lim
x!0
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(c) Using the Mclaurin polynomial of degree 4, �nd an approximation for ln(2)

5. Find the Taylor series for f(x) = x3 � 2x2 + x+ 1 with a = 1

6. (a) Using the series for ex; �nd the series for ex
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:

(b) Using the result in part a,express the integral
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dx as an in�nite series.
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